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ABSTRACT

We show that for multi-dimensional viscous flow computations the use of

upwind finite difference schemes can alter the natural length scales. This

false scaling is related to, but distinct from, the artificial viscosity

introduced by upwind schemes. We show that this false scaling can account for

certain non-physical solutions which have been computed for the driven cavity

problem. -
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SIGNIFICANCE AND EXPLANATION

Several researchers have demonstrated that upwind finite difference

schemes for viscous flow computations give inaccurate solutions when compared

with centered difference schemes. A major cause of the inaccuracy is the

artificial viscosity introduced by the upwind differencing. In this paper I

show that upwind schemes can also introduce a false scaling for multi-

dimensional problems.

This is therefore another reason to avoid upwind difference schemes for

viscous flow computations.
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UPWIND DIFFERENCING, FALSE SCALING,

AND NON-PHYSICAL SOLUTIONS TO THE DRIVEN CAVITY PROBLE4

John C. Strikwerda

1. Introduction

It is widely known that the use of upwind finite difference schemes for

equations describing viscous flow can introduce substantial amounts of

artificial viscosity at high Reynolds numbers (see e.g. Bozeman and Dalton

(1973), de Vahl Davis and Hallinson (1976)). The purpose of this paper is to

show that in multi-dimensional problems upwind differencing can also alter the

natural length scales of the problem. In particular, in section 3 we show how

this false scaling can account for certain non-physical solutions which have

been computed tor the driven cavity problem.

2. False Scaling

We begin by considering a single homogeneous elliptic equation

2_ u a2 au au
(2.1);x 2 + ;

2 + a -x- + b Iy 0
3 y2 =

on a rectangular domain

0 4x 41 , 0 4y 4y

with u(x,y) specified on the boundary. We assume that a and b are

positive constants. The upwind difference scheme for (2.1) is

u i+lj - 2uij + u iIj + ij+1 - 2ui + uij-

A2  + 2
Ax2  Ay2

(2.2)

+2a ui+ 1 4 +ui b u i+ 1 -uij a 0
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which is the same au

+ U+ 1 j - 2uhij +u ii + bAy ui0 - 2uij + u i-1

2 Ax2  2A 2

(2.3) u uu 1 l~i(2 3)+ u .i+i: - U i-l: + b u i i + I - ui j"  0
Ax M y

Now (2.3) for a fixed value of Ax can be regarded as a central difference

approximation to

(2.4) a2 u + a T + b V 0
3x2  2 y2

where

2 aAx ad 2 bAy] - 1 +-r" and2 - 1 +- --

If we change variables in (2.4) by y' - yr*/[ we obtain, after dividing by

2a,
(2u + 32u a au b au

(2.5) 3x 2 +_ - + -2Tx+We0 .2 I 0
If we define the Reynolds' number of (2.1) as R - a2 + b2  then the

Reysolds' number of (2.5) is R' = v(a/) + (b/B)2/a , and so R' < R. This

is the effect of artificial viscosity. Moreover the rectangular region for

(2.1) has the height, or aspect ratio, of y and that for (2.5) is yC/P. We

describe this change in aspect ratio as false scaling.

Thus solving (2.1) by upwind differences for given values of Ax and

Ay is equivalent to solving (2.5) by central differences, where (2.5) has

both a lower Reynolds' number and different aspect ratio than (2.1). Since

central differencing is second-order accurate and upwind differencing is only

first-order accurate we claim that the solution to (2.2) for given Ax and

Ay is closer to the solution of (2.5) than it is to the solution of (2.1).

This is indeed true for the equivalent one-dimensinal problem for a wide range

of parameters as is shown in the appendix.
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3. False Scaling and the Driven Cavity Problem.

We now look at the driven -cavity problem to study the effect of the false

scaling (see Bozeman and Dalton (1973) for a description of the problem). The

4 equations in convective form are

(31)2 2 a* w
ax2  ay2

8)x2  y2 'yxl exy

on the square 0 4 x C 1, 0 4 y C 1. R is the Reynolds' number and I and

w are the streamfunction and vorticity, respectively. The streamfunction

and its normal derivative are specified on the boundary. The top wall, at y

- 1, moves with unit speed to the right. The other walls are fixed. Because

*of the non-linearity of the sysem (3.1) it is impossible to rigorously analyze

the effect of upwind differencing, however, as a model consider

2 2
-x

2 + 2
ax ay

(3.2)
-2 +0 p2 +R(ayaw "3x3"w) = o
ax 2  ay 2

with o > 8 > 1. The constant a is taken to be greater than 8 since it is

assumed that the large velocity in the x-direction near the top driving wall

would give a larger contribution to the false diffusion than would the y-

components of the velocity.

As in the previous section, let

y' eiy

and the second equation in (3.2) becomes
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- R

2  -+4 + -'T -o

which has an effective Reynolds number of R/t and the domain has an

effective aspect ratio of a/0 > 1.

Now the solution of equations (3.1) for a square driven cavity is

characterized by a single large central vortex for any value of R, Pan and

Acrivos (1967), Bozeman and Dalton (1973), de Vahl Davis and Mallinson (1976),

and Keller and Schreiber (1981). If the aspect ratio of the cavity is greater

than about 1.6 the solution can have (at least) two large vortices, Pan and

Acrivos (197), Bozeman and Dalton (1973).

The use of upwind differencing for equations (3.1) can, however, give

solutions which have two large vortices for a square cavity e.g. Runchel and

Wolfshtein (1969), Gupta and Manohar (1980), Shay (1981), Bozeman and Dalton

(1973). This solution for the square driven cavity is almost certainly not

correct as shown by the careful studies of Bozeman and Dalton (1973), Keller

and Schrieber (1981), and others.

in light of the above analysis, the two vortex solution for the square

cavity can be explained as the result of false scaling which makes the

effective aspect ratio greater than 1.6. Indeed, the two vortex solutions for

the square cavity resemble the solutions for cavities with aspect ratio

greater than 1.6 which have been squeezed onto a square.

It should be pointed out tnat when upwind difference schemes are applied

to the divergence form of equation (3.1) i.e.

3x 2  aY2  rx(-.W) -1-Y (Tx 0

the solutions exhibit only one large vortex for R less than 1000 (Bozeman

and Dalton (1973)). Why upwind differencing of the diverqence form of (3.1)

-4-



should not exhibit the false scaling, but only the false diffusion, is not at

all clear. It could be that the false diffusion is less, or that it is

distributed more evenly between the two directions so as not to give a

tnoticable false scaling.

4. Conclusion

Although the analysis presented here is not completely rigorous it does

appear to be useful in explaining the origin of the particular non-physical

solutions of the driven cavity problem that have been obtained by upwind

difference schemes. The analysis highlights an additional danger of using

upwind differencing in computing viscous fluid flow.

1 -5-



Appendix

Consider the one-dimensional equivalent of (2.1),

d2u du
(A.1t) -+ a- =O

dx 2dx

with 0 4 x 4 1, a > 0, and u(0) - 1, u(I) = 0. The upwind finite

difference scheme for (A. 1) is

u +1 - 2ui + ui. 1  Ui+l - ui
(A.2)+a.-0

Ax 2  Ax

with u0 - 1, uN - 0 and Ax - 1/N. The scheme (A.2) is equivalent to the

central difference scheme

a u.i+ - 2u + u i u + - ui
(A.3) (1 + -) L) + a 0

and (A.3), for fixed Ax, can be regarded as an approximation to

(A.4) .2 A du0
dx 2  dx

with a2 = I +-a-- and u(O) - 1, u(1) - 0.
2 '

We will show that for a wide range of values of a the solution of (A.2)

and (A.3) is closer to the solution of (A.4) than it is to the solution of

(A.1). This serves to justify our assertions in sections 2 and 3.

The solution to the difference equations (A.2) and (A.3) is

(A.5) u, - (0 - (1 + aAx) i-N)/(1 - (1 + aAx) -N

and the solutions to (A.1) and (A.4) are

(A.6) u(x) (1 - ea(-x))/(i - e-a)

and

(A7) u(x) -a'(1-x)/ -a' )

2respectively, where a' -a/a
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In Table I we show the values of (A.5), (A.6) and (A.7) for Ax . 1/20

and several values of the parameter a, at x - I - Ax - .95..

Also shown are the relative errors of (A.6) and (A.7) from (A.5). This

& is an inverse error analysis; given the discrete solution (A.5) we wish to

know which continuous solution (A.6) or (A.7) is the better continuous

approximation.

Note that for 1 4 a 4 100 (A.7), the solution of (A.4), is closer to

(A.5) than is (A.6), the solution of (A.3). On this basis we justify our

Fclaim of section 2 that the solutions of (2.2) are closer to the solutions of

(2.5) than they are to the solutions of (2.1).

For a ) 100 the finite difference grid does not have any grid points in

the boundary layer, and it is only due to the simplicity of this example that

the solution to the finite difference scheme is close to the solution of the

differential equation. For more difficult problems such grid spacings can not

be regarded as adequate since they will not resolve any features of the

boundary layer.

t
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Table I

au19 u(.95) rel. err. u(.95) rel. err.

From A.5 From A.6 From A.7

1.0 .07642 .07715 1% .07642 0%

5.0 .20233 *22270 10% .20163 0.31

10.0 .33343 .39349 18% .32979 1.1%

50.0 .71429 .91792 28% .67081 6.1%

100. .83333 .99326 19% .76035 8.8%

200. .90909 .99995 10% .81112 11%
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